Updates in Procedural Interventions for Hair Loss in 2025

Naiem T. Issa, MD, PhD

Director of Clinical Trials & Academics

Forefront Dermatology, USA Vienna, Virginia, USA

Assistant Professor of Dermatology

University of Miami Miller School of Medicine Miami, Florida, USA <u>Clinical Assistant Professor of</u> <u>Dermatology</u> George Washington University School of Medicine Washington, DC, USA

School of Medicine & Health Sciences

Disclosures

- Abbvie
- Bristol Myers Squibb
- Castle Biosciences
- Dermavant Sciences
- DermTech
- Galderma
- Incyte
- Journey
- LEO Pharma
- Lilly
- National Eczema Association
- Ortho Dermatologics
- Pfizer
- RBC Consultants
- Regeneron
- Sanofi
- SUN Pharma
- Verrica Pharmaceuticals

Acknowledgements

Meena Alzamani, MS American University of the Caribbean School of Medicine Mariam Sobh, MS American University of the Caribbean School of Medicine

Narrow-Band UVB

• MOA:

AA

 Increased transcription of growth factors via Photobiomodulation

LPP

- Effect on cellular metabolism (i.e. mitochondria)
- Anti-inflammatory
- Adverse Effects:
 - Rare mild dry skin, irritation, scalp tenderness, paresthesia, urticaria
- Skin Cancer risk?
 - Very low/none

AA

NB-UVB

- Taieb et al. RCT on 60 patients with scalp AA randomized into four groups: (1) topical calcipotriol, (2) NB-UVB, (3) both and (4) placebo.
- N=60
- NB-UVB 2x/wk for 3 months
 - UVB lamp (TL01) of Waldman-type F 85/100W-01 (Waldman, Villingen- Schwenningen, Germany)
 - UVB lamp (TL01) of Waldman-type F 85/100W-01 (Waldman, Villingen-Schwenningen, Germany)
- Significant improvement in SALT scores after NB-UVB
- Combination of calcipotriol and NB-UVB is not superior to each line of treatment alone

	Group I (No. = 15)	Group II (No.=15)	Group III (No. = 15)	Group IV (No. = 15)	P value*
SALT score					0.976
Before treatment					
	4.01 ± 1.1	3.97 ± 0.7	4.27 ± 1.0	3.50 ± 0.9	
P value**	P1 = 0.977	P3=0.831	P5 = 0.651	P6 = 0.750	
	P2 = 0.854	P4 = 0.775			
After treatment					0.029
	2.84 ± 1.0	2.33 ± 0.7	1.73 ± 0.5	4.14 ± 1.0	
P value**	P1 = 0.891	P3 = 0.643	P5 = 0.025	P6 = 0.041	
	P2 = 0.530	P4 = 0.037			
P value***	0.026	0.005	0.004	0.140	

G I=topical calcipotriol, G II=NB-UVB, G III=both and G IV=placebo

P1 (G I vs G II), P2 (G I vs G III), P3 (G II vs G III), P4 (G II vs G VI), P5 (G III vs G VI), and P6 (G I vs G VI)

 Randomized Controlled Trial
 > Arch Dermatol Res. 2019 Oct;311(8):629-636.

 doi: 10.1007/s00403-019-01943-8. Epub 2019 Jun 24.

Topical calcipotriol vs narrowband ultraviolet B in treatment of alopecia areata: a randomizedcontrolled trial

Moustafa A El Taieb $^{\rm 1},$ Eisa M Hegazy $^{\rm 2},$ Hassan M Ibrahim $^{\rm 2},$ Asmaa B Osman $^{\rm 3},$ Manal Abualhamd $^{\rm 4}$

LPP

NB-UVB

- Prospective pilot study of NB-UVB monotherapy for LPP
- Inclusion Criteria:
 - Age >= 18 yrs (mean 56.3 +/- 11.0)
 - Bx-proven LPP
 - Baseline LPPAI score >2.0
- N = 16 (13 F, 3 M)
- Target area w/ greatest degree of clinical inflammation tattooed
- NB-UVB fiber-optic brush (300-320 nm) Levia LiteBrush (Daavlin Company) – 3x/wk for 6 months
- Statistically significant reduction in scalp inflammation
- 56.3% reported improvement in scalp pruritus
- Mild, transient scalp redness post-Tx

Table I. Outcomes of patients with lichen planopilaris treated with narrowband UV-B*

Category	Pretreatment (mo 0)	Posttreatment (mo 6)	Mean change	P value
Clinical assessments, mean	± SD (Δ%)			
LPPAI score	2.3 ± 1.5	1.06 ± 0.6	-1.3 ± 1.3 (-45%)	.01 ⁺
Target area scale [†]	1.4 ± 1.0	0.9 ± 0.7	-0.5 ± 0.8 (-21%)	.03†
Target area erythema [†]	1.8 ± 1.1	0.7 ± 0.9	-1.1 ± 1.1 (-46%)	<.01 [†]
Trichologic assessment, mea	$n \pm SD$			
Hair density	141.9 ± 47.2	137.6 ± 52.2	-4.31 ± 14.7	.26
Hair diameter	74.5 \pm 25.0	74.7 ± 29.3	0.22 ± 11.2	.94

AAD	JA	٩D	Journal of the American Aca	idemy of [Dermatology	Log in	Register
Articles	Publish	Topics	Multimedia	About	Contact	s	earch for
RESEARCH LE	TTER · Volum	e 87, Issue 3,	, P703-705, Septem	ber 2022			

🕁 Download Full Issue

A prospective pilot study of narrowband UV-B treatment of lichen planopilaris

iames T. Pathoulas, MD ° · Kelly E. Flanagan, MD, MS ° · <u>Mack Y. Su, MD, PhD ° · … · Daniel D. Miller, MD</u> ^c · Maria K. Hordinsky, MD ^c · Yaryanne M. Senna, MD 옷 ° 쯔… Show more

Superficial Cryotherapy

AA

Superficial Cryotherapy

- Hypothesized MOA:
 - Immunomodulation
 - Reactive vasodilation after the immediate initial vasoconstrictive response and improve microcirculation in hair follicles leading to increased hair growth
- Effect of cryotherapy for the treatment of AA first examined in 1991-97% of patients with mild AA demonstrated a therapeutic response
- Numerous studies reporting 55-80% hair regrowth
- Success in recalcitrant AA
- Some studies compared to ILK and saw comparable results
- Pros: cheap, can be easily implemented
- Cons: no payor coverage for CPT code

Review > J Drugs Dermatol. 2023 Aug 1;22(8):802-809. doi: 10.36849/jdd.7431.

Review of Superficial Cryotherapy for the Treatment of Alopecia Areata

Michael Kaiser, Najy Issa, Marita Yaghi, Joaquin J Jimenez, Naiem T Issa

PMID: 37556514 DOI: 10.36849/jdd.7431

Low Leve Light Therapy (LLLT)

LLLT (red and near-IR 600-1070nm)

- Hypothesized MOA:
 - Increased transcription of growth factors via Photobiomodulation
 - Effect on cellular metabolism (i.e. mitochondria)
 - Anti-inflammatory
- Adverse Effects:
 - Rare mild dry skin, irritation, scalp tenderness, paresthesia, urticaria
- AGA:
 - Has FDA approval*
 - Double-Blind, Sham-controlled, randomized trials performed
- AA:
 - Case reports & series
- LPP:
 - Case reports & Series

RESEARCH LETTER 🕐 Volume 78, Issue 5, P1020-1023, May 2018 🕁 Download Full Issue

Effectiveness of low-level laser therapy in lichen planopilaris

Pablo Fonda-Pascual, MD 은 점 - Oscar M. Moreno-Arrones, MD - David Saceda-Corrolo, MD - - Cristino Pindado-Ortega, MD Pablo Boixeda, MD, PhD - Sergio Vaña-Galvan, MD, PhD... Show more

Affiliations & Notes \checkmark Article Info \checkmark

Lichen Planopilaris and Low-Level Light Therapy: Four Case Reports and Review of the Literature About Low-Level Light Therapy and Lichenoid Dermatosis

Dermatology and Therap

LLLT (red and near-IR 600-1070nm)

Table I. Baseline demographics of the study population (males, n = 123) Characteristic Value Age (y) Mean±SD 47.9±8.7 Range 30-60 Race [n (%)] White, non-Hispanic 111 (90.2) 9 (7.3) Hispanic Black 0 (0) Other 3 (2.4) Fitzpatrick Skin Type Scale classification [n (%)] 4 (3.3) 17 (13.8) ш 65 (52.9) IV 37 (30.1)

Table III. Categorical changes from baseline to 26 weeks in terminal hair density^a

Change in hair density/cm ²	HairMax LaserComb® (n=72) [n (%)]	Sham device (n=40) [n (%)]							
≤–20	1 (1.4)	7 (17.5)							
≥–20 to –5	1 (1.4)	19 (47.5)							
≥–5 to 0	3 (4.2)	9 (22.5)							
>0 to 5	5 (6.9)	3 (7.5)							
>5 to 20	34 (47.2)	2 (5.0)							
>20	28 (38.9)	0 (0)							
a Last value carried forward for sub	a Last value carried forward for subjects who terminated prematurely.								

ORIGINAL RESEARCH ARTICLE

Cin Drug Invest 2009, 29 dix 253 292 1174 2553/07/0006 0253/145 95/0 © 2009 Ad a Data Information BV. All rights reserve

HairMax LaserComb[®] Laser Phototherapy Device in the Treatment of Male Androgenetic Alopecia A Randomized, Double-Blind, Sham Device-Controlled, Multicentre Trial

Matt Leavitt,1 Glenn Charles,2 Eugene Heyman3 and David Michaels4

Trial #3. Male 7-beam

177 18.4

16 weeks 26 weeks

16

C

5

Chai

d

.≘ ⋧

25

20

Categorical Change in Terminal Hair Density (count/cm²

Categorical Change in Terminal Hair Density (count/cm²)

■ 12-beam n=0.0067 p=0.0033 20

Categorical Change in Terminal Hair Density (count/cm²)

Am J Clin Dermatol (2014) 15:115-127

0

DOI 10.1007/s40257-013-0060-6

ORIGINAL RESEARCH ARTICLE

Efficacy and Safety of a Low-level Laser Device in the Treatment of Male and Female Pattern Hair Loss: A Multicenter, Randomized, Sham Device-controlled, Double-blind Study

Joaquin J. Jimenez · Tongyu C. Wikramanayake · Wilma Bergfeld · Maria Hordinsky · Janet G. Hickman Michael R. Hamblin · Lawrence A. Schachner

AA

- N =16 pts
- Recalcitrant AA of scalp, eyebrow, mustache
- Low-level invisible pulsed infrared diode laser (**904 nm**) wavelength, with a peak power of 150 W.

	N.	N	Size			Gen	der	
Location	No. of patients	No. of patches	$< 2 \text{ cm}^2$	$< 4 \text{ cm}^2$	$>7 \text{ cm}^2$	Male	Female	Results of treatment
Scalp	6	14	-	4	10	3	3	13 complete 1 partial (10 after 1 week)
Eyebrow	3	6	1	5	-	1	2	5 complete 1 failure
Beard	5	12	1	5	6	5	-	(4 after 1 week) 11 complete 1 failure
Moustache	2	2	1	1	-	2	_	(8 after 1 week) 2 partial (2 after 1 week)

Journal of Cosmetic and Laser Therapy. 2006; 8: 27-30

ORIGINAL ARTICLE

Use of the pulsed infrared diode laser (904 nm) in the treatment of alopecia areata

LLLT (red and near-IR 600-1070nm)

- N = 4 pts
- Prior treatments with ILK
- LLLT yarn (Lumiton) 200-700nm

4	F	69	White	Triamcinolone injections	Daily	5%	2%
3	F	22	White	Triamcinolone injections	1x weekly	20%	19%
2	м	33	Black	None	1x weekly	4%	2%
						SALT	SALT
AA							

Figure 3. (A,B) Before (week 0) and after (week 12) photographs of alopecia areata of the vertex scalp.

JOURNAL OF DERMATOLOGICAL TREATMENT 2023, VOL. 34, NO. 1, 2251619 https://doi.org/10.1080/09546634.2023.2251619

OPEN ACCESS OPEN ACCESS

ARTICLE

Could red and near-infrared emitting fabric technology improve the severity of psoriasis, polymorphous light eruption, and alopecia areata?

Jessica N. Pixley^a (), Rithi J. Chandy^a, Irma Richardson^a, Joseph L. Jorizzo^a and Steven R. Feldman^{a,b,c}

LPP

LLLT (red and near-IR 600-1070nm)

Authors (year)	Disease process	Type of study	Methods	LLLT specifications	Results
Fonda- Pascual et al. [6]	LPP	Prospective study of LLLT for treatment of LPP	8 subjects (5 female, 3 male) received LLLT 15 min daily for 6 months	246 red LED $\lambda = 630 \text{ nm}$ Exposure = 15 min	All patients had reduction of symptoms, erythema, and perifollicular hyperkeratosis. And an increase in terminal hair thickness
Gerkowicz et al. [7]	FFA and LPP	Prospective study of sLED as adjuvant therapy	16 female subjects (8 FFA, 8 LPP) received sLED 1× a week for 10 weeks	Lamp with 78 pulsed diodes $\lambda = 630 \pm 5 \text{ nm} \text{ (red} \text{ light)}$ Power density = 100–120 mW/ cm ² Exposure time = 13 min	FFA and LPP severity improved. sLEDs can be used as adjuvant therapy in these patients

Table 2 Summary of literature on the use of low-level light therapy for treatment of lichenoid dermatosis

Fig. 1 A 42-year-old patient 1a before and 1b after 18 months of treatment with LLLT with evident hair regrowth. Scalp under $\times 50$ magnification trichoscopy 2a

before and $\mathbf{2b}$ after 4 months of treatment with LLLT, showing reduction of peripilar casts

Effectiveness of low-level laser therapy in lichen planopilaris

Pablo Fonda-Pascual, MD 名 留・Oscar M. Moreno-Arrones, MD · David Saceda-Corralo, MD · … · Cristina Pindado-Ortega, MD · Pablo Boixeda, MD, PhD · Sergio Vaño-Galvan, MD, PhD... Show more Affiliations & Notes マ Article Info マ

Photodiagnosis and Photodynamic Therapy Volume 28, December 2019, Pages 195-200

Application of superluminescent diodes (sLED) in the treatment of scarring alopecia – A pilot study

Home > Dermatology and Therapy > Article

Lichen Planopilaris and Low-Level Light Therapy: Four Case Reports and Review of the Literature About Low-Level Light Therapy and Lichenoid Dermatosis

Dermatology and Therapy

- N = 16 Females
- FFA w/ eyebrow loss duration 3-10 years
- LED matrix illuminator Red Beam pro+, Model APRO (MEDlight GmbH, Herford, Germany).
- Tx 1x/week for 10 weeks

Open Access Article

Novel Application of Light-Emitting Diode Therapy in the Treatment of Eyebrow Loss in Frontal Fibrosing Alopecia

by Agnieszka Gerkowicz ^{1,*} ⊠ [©], Joanna Bartosińska ² [⊠], Dorota Raczkiewicz ³ [⊠], Mirosław Kwaśny ⁴ [⊠] and Dorota Krasowska ¹ [⊠] [©]

LLLT (red and near-IR 600-1070nm)

Figure 1. Comparison of clinical and trichoscopic images before (A,D,G,J,M,P,S,W), after (B,E,H,K,N,Q,T,X) 10 LED irradiations, and during the post-treatment follow-up visit (C,F,I,L,O,R,U,Y). The red circle indicates localization of compared trichoscopic images. 1E, 1K, 1Q, 1X: increased number of thick eyebrow hairs and increased total eyebrow hair count after 10 LED irradiations; 1F, 1L, 1R, 1Y: reduced number of thick hairs compared with the post-treatment images, and similar or increased total eyebrow hair count compared with the trichoscopic images at baseline.

- Hypothesized MOA:
 - T-cell modulation
- Adverse Effects:
 - Rare mild dry skin, irritation, scalp tenderness, paresthesia, urticaria
- AA:
 - Controlled trials
- LPP:
 - Case reports & Series

• 2020 meta-analysis

• Controlled trials (with controlled group) and all prospective studies

(A) All AA patients, cosmetically acceptable regrowth

(B) AA patients excluding AT or AU, cosmetically acceptable regrowth

	Experime	ental	Co	ntrol				
Study	Events Total Events			otal	Risk Ratio	RR	95% CI Weig	
Byun et al, 2015 ²⁰	4	8	2	8	- <u>-</u>	2.00	[0.50; 8.00]	31.2%
Sanga and Mittal, 2015 ²	1 7	30	1	30		7.00	[0.92; 53.47]	22.2%
Zakaria et al, 200411	4	5	0	5		9.00	[0.62; 130.22]	15.9%
Al-Mutairi et al, 200712	13	17	0	17		27.00	[1.74;419.74]	15.4%
Al-Mutairi et al, 200917	18	20	0	20		37.00	[2.39;573.87]	15.4%
Random effects model		80		80	<	7.84	[2.13; 28.84] 10	00.0%
Heterogeneity: / 2 = 43%, t	² = 0.9177,	p = 0.14	•		0.01 0.1 1 10 100			

FIGURE 3 Efficacy of excimer laser (EL) treatment; data from controlled clinical trials with control group. A, Responses of all AA patients. B, Responses of AA patients excluding those with alopecia totalis (AT) or alopecia universalis (AU)

(A) All AA patients, cosmetically acceptable regrowth

(B) All AA patients, ≥50% regrowth

Study	TE	seTE	Rates	Rates	95% CI	Weight
Arakawa et al. 2016 22	36.36	14.5041		36.36	[7.94; 64.79]	11.2%
Sanga and Mittal. 2015 2	53.33	9.1084		53.33	[35.48; 71.19]	18.6%
Zakaria et al. 200411	55.56	16.5635		55.56	[23.09; 88.02]	9.3%
Ohtzuki et al. 201319	62.50	12.1031		62.50	[38.78: 86.22]	14.0%
Al-Mutairi, 2007 12	72.22	10.5572		72.22	[51.53; 92.91]	16.2%
Byun et al. 2015 20	75.00	15.3093		→ 75.00	[44.99; 105.01]	10.4%
Al-Mutairi. 200917	81.82	8.2230		- 81.82	[65.70; 97.94]	20.2%
Random effects model			0	64.01	[52.28; 75.73]	100.0%
Heterogeneity: / 2 = 45%, t	2 = 109.	3563, p = 0.09				
Test for overall effect: z = 10	0.70 (p	< 0.01)	0 20 40 60 80	100		

Received: 26 February 2020	Revised: 6 July 2020	Accepted: 16 July 2020		
DOI: 10.1111/phpp.12596				
ORIGINAL ARTIC	LE		Photodermatology, Photoimmunology & Photomedicine	WILEY

Excimer laser/light treatment of alopecia areata: A systematic review and meta-analyses

- Weekly excimer vs monthly IL corticosteroid injections
- Hair regrowth initially slower with excimer treatment but one month follow-up showed equal hair regrowth

CLINICAL REPORT

Comparison of the efficacy and safety of 308-nm excimer laser with intralesional corticosteroids for the treatment of alopecia areata: A randomized controlled study

Nika Kianfar MD, Shayan Dasdar MD, Hamidreza Mahmoudi MD 🔀, Robabe Abedini MD, Shabnam Fahim MD, Seyed Amirhossein Hosseini MD, Maryam Daneshpazhooh MD

First published: 02 December 2021 | https://doi.org/10.1002/lsm.23501 | Citations: 3

- N = 13, split-scalp
- Adult patients with biopsy-proven, active LPP unresponsive to conventional therapies like topical corticosteroids
- XTRAC UV-B light with 30-nanosecond pulses at a repetition rate of 250 Hz produced by xenon chloride at a wavelength of 308 nm
- Significantly reduced inflammatory activity in expressed by decreased erythema, pain, pruritus, and hyperkeratosis.
- Compared with topical therapies that require daily application, a twice-weekly laser regimen showed a greater rate of treatment compliance.

Figure. A 63-year-old woman with lichen planopilaris before (A) and after (B) treatments with monochromatic excimer laser.

Research Letter

Nov 2011

Low-Dose Excimer 308-nm Laser for Treatment of Lichen Planopilaris

Alexander A. Navarini, MD, PhD; Antonios G. A. Kolios, MD; Bettina M. Prinz-Vavricka, MD; et al

» Author Affiliations | Article Information

Arch Dermatol. 2011;147(11):1325-1326. doi:10.1001/archdermatol.2011.335

Fractional Laser

 MoA: activates Lgr5+ HFSCs and upregulating the Wnt/β-catenin pathway

Fractional Laser

BAE ET AL.

Fig. 2. Hair regrowth after ablative CO_2 fractional laser treatment. (A) Group A showed that the laser treatment with 100 spot/cm² was more effective than that with 100 spot/cm². (B) & (C) In group B, the most effective dosage was 10 mJ/spot at 300 spot/cm². In the 300 spot/cm², energy > 10 mJ/spot was associated with lower hair regrowth potential and scar tissue formation.

> Aesthetic Plast Surg. 2024 May;48(9):1831-1845. doi: 10.1007/s00266-023-03796-z. Epub 2023 Dec 28.

Carbon Dioxide Fractional Laser Treatment Induces Lgr5+ Stem Cell Activation and Hair Regrowth Through the Canonical Wnt/β-Catenin Pathway > Lasers Surg Med. 2015 Jul;47(5):433-40. doi: 10.1002/lsm.22358. Epub 2015 May 6.

Hair regrowth through wound healing process after ablative fractional laser treatment in a murine model

Jung Min Bae¹, Han Mi Jung¹, Boncheol Goo², Young Min Park³

- MoA: activates Lgr5+ HFSCs and upregulating the Wnt/β-catenin pathway
- One study showed superiority of topical minoxidil 5% solution QD

> Aesthetic Plast Surg. 2024 May;48(9):1831-1845. doi: 10.1007/s00266-023-03796-z. Epub 2023 Dec 28.

Carbon Dioxide Fractional Laser Treatment Induces Lgr5+ Stem Cell Activation and Hair Regrowth Through the Canonical Wnt/β-Catenin Pathway

Fractional Laser

	Laser gro	up	Minoxidil	group	Δ(baseline to the Week 10)		p value	
	Baseline	Week 10	Baseline	Week 10	Laser	Minoxidil	1	
Hair count	164.93 ±40.51	196.27± 40.85	161.07 ±38.71	177.20± 40.41	31.33 ± 13.56	16.13± 7.36	0.001	
Hair density (hair/cm²)	118.67 ±28.47	140.92± 29.34	115.63 ±27.78	127.20± 29.02	22.25 ±9.59	11.57± 5.25	0.001	
Average diameter of terminal hair(μm)	61.55± 19.06	63.93± 22.38 ^{<i>a</i>}	51.16± 14.53	69.79± 11.4	2.38 ± 15.06	1.15± 3.35	0.761	

 Randomized Controlled Trial
 > J Cosmet Dermatol. 2024 May;23(5):1638-1644.

 doi: 10.1111/jocd.16173. Epub 2024 Jan 21.

Investigator-blinded, controlled, and randomized comparative study on 1565 nm non-ablative fractional laser versus 5% minoxidil for treatment of androgenetic alopecia

Fractional Laser

Table 1 Fractional lasers in the treatment of alopecia

Laser	Wavelength (nm)	Author	Subject group	Alopecia type	Energy settings	Spot size (mm)	No. of passes	No. of sessions	Intervals (week)	Adverse effects
Erbium-glass	1550	Lee et al. [4]	28 female patients	Alopecia areata	6 mJ/spot, 800 spot/cm ²	5-10	1	10	2	Pruritus
		Kim et al. [5]	20 male patients	Androgenic alopecia	5 mJ/spot, 300 spots/cm ²	NR	NR	5	2	Breakage of hair shaft, pain, mild erythema, puritus, dandruff, dryness
		Cho et al. [6]	17 patients (9 male, 8 female)	Various hair disorders/alopecias	6-8 mJ/spot, 300 spots/cm²/pass	NR	2	8-22	NR	Transient post-treatment crusting, scaling, erythema, and edema
		Eckert et al. [7]	5 (2 male, 3 female)	Alopecia areata	6-8 mJ/spot, 30-45 mJ/cm ²	NR	8-10	2-3	3 to 6	Pain
		Yoo et al. [8]	1 male patient	Alopecia areata	10-15 mJ/spot, 300 spot/cm ² /pass	NR	2	24	1	None reported
		Tsai [9]	1 male patient	Alopecia areata	NR	NR	NR	2	1	NR
Erbium: YAG	2940	Ke et al. [10]	C57BL/6 mice	Androgenic alopecia	1200 mJ/cm ²	15-40	2	3	1	Causitry, hypopigmentatio
CO ₂	10,600	Bae et al. [11]	C57BL/6 mice	Androgenic alopecia	10 mJ/spot, 300 spots/cm ²	10	1	1	0	Scar tissue reformation
	NR	Yalici-Armagan and Elcin [12]	32 patients (19 male, 13 female)	Alopecia areata	10-45 mJ/cm ² , 75-100 spot/cm ² /pass	NR	NR	3-6	2 or 4	Pain
	10,600	Cho et al. [6]	17 patients (9 male, 8 female)	Various hair disorders/alopecias	30-50 mJ/spot, 150 spots/cm ²	120 µm	NR	8-22	NR	Transient post-treatment crusting, scaling, erythema, and edema
	10,600	Issa et al. [13]	3 female patients	Alopecia areata	60 W, 60 mJ/pixel	125–150 µm	2	1-6	3	Mild burning

Lasers Med Sci DOI 10.1007/s10103-017-2306-7

REVIEW ARTICLE

Efficacy of fractional lasers in treating alopecia: a literature review

Marina Perper¹ • Adam S. Aldahan¹ • Rachel A. Fayne¹ • Christopher P. Emerson¹ • Keyvan Nouri¹

Fractional Laser

- MoA: induction of T cell apoptosis, arresting hair follicles in telogen stage and promoting anagen stage and denovo neogenesis of hair follicles from non-hair follicle stem cells
- One patch was treated by FCO2 laser every 2 weeks for 3 to 6 sessions, while the other treated with intradermal injection of Triamcinolone Acetonide monthly for three sessions maximally.
- There was a highly significant improvement with FCO2 laser rather than ILCs 3 months after last session

Short Paper

Comparative study between fractional carbon dioxide laser vs intralesional steroid injection in treatment of alopecia areata

Rania El-Husseiny 🔀 Sara Elframawy, Mohammed Abdallah

Follow up after 3 months	FCO2 las	ILC	S	Wilcoxon Signed Ranks Test			
	Median	IQR	Median	IQR	p value	sig.	
	4 (>75%-99%)	2.5 -4.5	1 (<25%)	1 - 2	<0.001	HS	
MISP	Number %		Number	%			
Minimal improvement	2	10%	11	55%			
Moderate improvement	3	15%	9	45%			
Marked improvement	3	15%	0	0%	<0.001	HS	
Excellent improvement	7	35%	0	0%			

Fractional Laser

 MoA: non-ablative fractional laser to target dermis instead of epidermis

Case Reports > Int J Womens Dermatol. 2020 Nov 4;7(3):355-356. doi: 10.1016/j.ijwd.2020.10.007. eCollection 2021 Jun.

Frontal fibrosing alopecia treatment with Nd:YAG (1064 nm) nonablative laser

Jacob Subash ¹, Ariana Eginli ¹, Leonora Bomar ¹, Amy McMichael ¹

Platelet-Rich Plasma (PRP)

PRP

https://www.youtube.com/shorts/AGwa8nfRmF4

- Hypothesized MOA:
 - Pro-stimulatory growth factors (i.e. bFGF, PDGF, VEGF, EGF, TGF-beta, IGF-1)
 - Activated vs non-activated PRP
- Adverse Effects:
 - Rare mild irritation, scalp tenderness, paresthesia, urticaria
 - Rare koebnerization of LPP (Dr. Issa's experience)

- PRP may be anti-inflammatory through TGF-beta (immunomodulatory) and suppression of MCP-1 (chemokine for lymphocytes)
- No standardized protocol
- RCTs:
 - Taieb et al (2017) PRP (3 sessions q4 wks) superior to placebo and minoxidil 5%

PRP

FIGURE 2 a-d: A 15-years-old male patient presented by alopecia universalis of 2-years. (a) Trichoscopy after 1 month of PRP treatment shows short vellus hairs (SVH), upright growing hair (GH) and yellow dots (YD). (b) Trichoscopy after 3 months shows upright growing hair (GH) and short vellus hairs (SVH). (c) Digital photo before PRP treatment. (d) A photo after 3 months of PRP treatment shows scalp, eye brows, and eye lashes were completely resolved

ORIGINAL PAPERS

Platelets rich plasma versus minoxidil 5% in treatment of alopecia areata: A trichoscopic evaluation

Platelet-Rich Plasma in the Treatment of Alopecia Areata: A Review Hind M. Almohanna 유고 프 - Azhar A. Ahmed² - Jacob W. Griggs³ - Antonella Tosti³

- 2024 PRISMA study on PRP for scarring alopecia
- 11 studies found (case reports); LPP 7 studies
- Some cases showed improvement in perifollicular inflammation and hair shedding
- Some experienced increased shedding and inflammation*
 - Personally experienced by Dr. Issa

 DECEMBER 2024
 1076

 COPYRIGHT © 2024
 ORIGINAL ARTICLE

VOLUME 23 • ISSUE 12 JOURNAL OF DRUGS IN DERMATOLOGY

Evaluating Anti-Inflammatory Potential of Platelet-Rich Plasma in Scarring Alopecia: A Systematic Review

Susie Suh MD PhD,^{a,b*} Minjun Park BA,^{a,c*} Arash Babadjouni MS,^a Natasha Atanaskova Mesinkovska MD PhD^a RESEARCH LETTER · Volume 83, Issue 5, P1506-1509, November 2020

Use of platelet-rich plasma in lichen planopilaris and its variants: A retrospective case series demonstrating treatment tolerability without koebnerization

Katerina Svigos, BA • Lu Yin, BA • Katharina Shaw, MD • ... • Erik Peterson, MD • Kristen Lo Sicco, MD • Jerry Shapiro, MD 😤 🖾

PRP

- 2024 PRISMA study on PRP for scarring alopecia
- 11 studies found (case reports); LPP 7 studies
- Some cases showed improvement in perifollicular inflammation and hair shedding

- PRP should NOT be considered as 1st-line tx at this time
- Some experienced increased shedding and inflammation*
 - Personally experienced by Dr. Issa

VOLUME 23 • ISSUE 12

December 2024 Copyright © 2024

ORIGINAL ARTICLE JOURNAL OF DRUGS IN DERMATOLOGY

Evaluating Anti-Inflammatory Potential of Platelet-Rich Plasma in Scarring Alopecia: A Systematic Review

1076

Susie Suh MD PhD,^{a,b*} Minjun Park BA,^{a,c*} Arash Babadjouni MS,^a Natasha Atanaskova Mesinkovska MD PhD^a RESEARCH LETTER · Volume 83, Issue 5, P1506-1509, November 2020

Use of platelet-rich plasma in lichen planopilaris and its variants: A retrospective case series demonstrating treatment tolerability without koebnerization

Katerina Svigos, BA · Lu Yin, BA · Katharina Shaw, MD · ... · Erik Peterson, MD · Kristen Lo Sicco, MD · Jerry Shapiro, MD 🙁 🖾

Microneedling

Microneedling

- Hypothesized MOA:
 - Microtrauma to stimulate wound healing
 - Triggers increased blood flow (help overcome microvascular insufficiency) and growth factors (similar to PRP)
 - One study showed combination with PRP is synergistic but less pronounced difference with greater Norwood grade*
 - Another split-scalp study showed no statistical difference

Average Hair Density (per sq-cm)		Paired t-test			
	м	N	MN+		
	Mean	SD	Mean	SD	р
Pre-Therapy	94.524	23.579	95.143	22.060	0.804
Post-Therapy	105.333	23.795	109.809	20.653	0.177

> Cureus. 2022 Oct 18;14(10):e30418. doi: 10.7759/cureus.30418. eCollection 2022 Oct

Comparison of Efficacy of Platelet-Rich Plasma (PRP) With PRP Microneedling in Androgenetic > Int J Trichology. 2020 Jul-Aug;12(4):156-163. doi: 10.4103/ijt.ijt_64_20. Epub 2020 Sep 19.

Dermoscopic Assessment of Microneedling Alone versus Microneedling with Platelet-Rich Plasma in Cases of Male Pattern Alopecia: A Split-Head Comparative Study

Botulinum Toxin

Botulinum Toxin A

Table 1 The association of scalp hardness with the occurrence and severity of AGA by GEE test*

Sex	Outcome	Independent variable	OR	95% CI	P-value
Male	AGA vs. non-AGA	Hardness	1.11	1.04–1.19	0.003
	AGA grade (0–1, 2–4 and 5–7)		1.11	1.03–1.19	0.004
Female	AGA vs. non-AGA	Hardness	1.04	0.96–1.13	0.32
	AGA grade (0, 1, 2 and 3)		1.07	0.997–1.14	0.061

Suppression of DHTinduced expression of TGF-B1 in DPCs

Androgenetic alopecia is associated with increased scalp hardness

K.-Y. Chen, S.-H. Lin, S.-Y. Cheng, T.-K. Lo, H.-Y. Huang, M.-J. Tang, C.-C. Yang 🗱 First published: 15 January 2020 | https://doi.org/10.1111/jdv.16194 | Citations: 6

Hypothesized MOA

- Relaxation of scalp muscles → reduced tension → increased circulation & oxygenation → increased DHT outflow
- Direct effect on TGF-beta-induced perifollicular fibrosis?
- Direct effect on inhibitor of DPC apoptosis?
- Adverse Events:
 - Pain, headache, dizziness, itchiness

iome > Aesthetic Plastic Surgery > Article

Botulinum Toxin Type A Alleviates Androgenetic Alopecia by Inhibiting Apoptosis of Dermal Papilla Cells via Targeting circ_0135062/miR-506-3p/Bax Axis

riginal Articles | Basic Science | Published: 29 January 2024 olume 48, pages 1473–1486, (2024) <u>Cite this article</u> RESEARCH LETTER · Volume 83, Issue 6, P1838-1839, December 2020

The effect of intradermal botulinum toxin on androgenetic alopecia and its possible mechanism

Uri Shon, MD ° • Myung Hwa Kim, MD ° • Dong Yoon Lee, MD ° • Se Hwan Kim, PhD ^b • Byung Cheol Park, MD 🖱 ° 🖾

Botulinum Toxin A

- General injection technique:
 - Dilute BTX-A 100 U in 2 mL of 0.9% saline (5U/0.1 mL)
 - Clean scalp with with 70% ethyl alcohol
 - 20 injection sites spaced 2-3cm apart
 - 5U per injection site
 - Intradermal vs intramuscular?
 - Every 3 months, 3-4 times?

Skin Research & Technology

ome > Archives of Dermatological Research >

riginal Paper | Rublished 17 August 202

Forward

Series

Assessing the efficacy and quality of Life improvements of botulinum toxin type a with topical minoxidil versus topical minoxidil in male androgenetic alopecia: a randomized controlled trial

RESEARCH LETTER - Volume Rg. Issue G. PhRgR-1833, December 20

The effect of intradermal botulinum toxin on androgenetic alopecia and its possible mechanism **Efficacy and safety of botulinum toxin A in the treatment of female pattern hair loss**

Uri Shon, MD ° - Myung Hwa Kim, MD ° - Dong Yoon Lee, MD ° - Se Hwan Kim, PhD ° - Byung Cheol Park, MD R ° 🖾

Lifang Hu, YeQin Dai, Hongyan Zhang, Yi Wu, Tao Wang, Xiuzu Song 💌

ORIGINAL ARTICLE 👌 Open Access 🛛 🐵 🛞

Botulinum Toxin A

- Conflicting evidence by Melo et al. (2024) in first randomized, tripleblind, placebo-controlled trial
- N = 13 males
- intraMUSCULAR injections in frontal area
- intraDERMAL injections in vertex (near aponeurotic galea, lack of musculature)
- Tx at weeks 0 & 12, 50 IU BTX vs saline (split-scalp)
 - 25 IU injected into two 1 cm2 scalp areas, which differs from previous studies with injections of 30-150 IU distributed across either half or the entire scalp
- Evaluation at week 24
- BTX did NOT improve hair growth

 Table II. Main outcomes for participants in the study (H2H)

	Botulinum toxin (n = 13)			Plac	ebo (n = 13)			
	To	T ₂₄	P value*	To	T ₂₄	P value*	Difference of change (CI 95%)	P value [†]
Density of hair/cm ² , mean (SD)								
Frontal								
Terminal	99.3 (45.5)	85.5 (48.5)	.904	103.7 (30.6)	92.7 (31.7)	.882		
Change (T ₂₄ -T ₀)	-	-13.8 (36.1)		-	-11.0 (32.0)		-2.8 (-18.1; 12.5)	.652
Total	216.0 (56.4)	218.8 (56.5)	.290	216.3 (48.0)	219.2 (54.2)	.235		
Change (T ₂₄ -T ₀)	-	2.7 (17.3)		-	3.0 (14.4)		0.3 (-11.9; 12.4)	.576
Vertex								
Terminal	118.2 (42.3)	95.9 (46.0)	.979	119.4 (47.8)	98.7 (40.8)	.980		
Change (T ₂₄ -T ₀)	-	-22.3 (35.6)		-	-20.7 (32.3)		-1.6 (-19.5; 16.3)	.848
Total	216.9 (40.0)	217.7 (39.7)	.408	217.5 (40.7)	225.4 (49.2)	.025		
Change (T ₂₄ -T ₀)	-	0.9 (13.4)		-	7.9 (13.1)		7.0 (-1.66; 15.7)	.948

RESEARCH LETTER · Volume 91, Issue 5, P996-998, November 2024 🕹 Download Full Issue

Efficacy of botulinum toxin in male androgenetic alopecia: A tripleblind, randomized clinical trial

Daniel Fernandes Melo, MSC, MD, 2° 🖾 · Paulo Müller-Ramos, PhD, MD ^b · Rita Fernanda Cortez de Almeida, MD ^a · … · André Luiz Vairo Donda, MD ^a · Daniela Alves Pereira Antelo, PhD, MSC, MD ^a · Carlos Baptista Barcaui, PhD, MSC, MD ^a… Show more

Autologous Celleular Micrografts

Autologous Cellular Micrografts

Hypothesized MOA:

AGA

- Mature hair follicle mesenchymal stem cells (HF-MSCs) located in hair bulge are multipotent cells with key role in HF regeneration and other scalp skin structures
- Self-regenerate b/w telogen and anagen phases
- Can migrate down hair matrix to become progenitor cells ultimately forming internal hair follicles and hair stem
- Helps to overcome DHT-driven process that suppress dermal papilla cells (DPCs)
- 2-2.5 mm punch biopsies to harvest follicles from pre-mastoid occipital hairline
- Obtain progenitor cell-rich micrograft (NOT stem cell)
- Adverse Effects:
 - Low risk of redness, swelling, tenderness, infection, discomfort, scarring at the injection site

Cellular Physiology

Role of Autologous Micrografting Technology through Rigenera® System in the Treatment Progenitor-cell-enriched micrografts as a novel option for the of Androgenetic Alopecia

management of androgenetic alopecia

Rafael G. Ruiz, Jose M. C. Rosell, Gabriele Ceccarelli, Ciro De Sio, Gabriella C. De Angelis, Hernan Pinto Carlo Astarita 🖾 Antonio Graziano

First published: 23 October 2019 | https://doi.org/10.1002/jcp.29335 | Citations: 19

Subject Area: 🕸 Dermatology

RESEARCH ARTICLES | OCTOBER 22 2024

Colombina Vincenzi 🖽; Norma Cameli; Valeria Pessei; Antonella Tosti

Autologous Cellular Micrografts

- Less adipose, thickened DPC, more regular/structured collagen
- Increased cell proliferation

Cellular Physiology

ORIGINAL RESEARCH ARTICLE

Progenitor-cell-enriched micrografts as a novel option for the management of androgenetic alopecia

Rafael G. Ruiz, Jose M. C. Rosell, Gabriele Ceccarelli, Ciro De Sio, Gabriella C. De Angelis, Hernan Pinto, Carlo Astarita 🕰 Antonio Graziano

First published: 23 October 2019 | https://doi.org/10.1002/jcp.29335 | Citations: 19

RESEARCH ARTICLES | OCTOBER 22 2024

Role of Autologous Micrografting Technology through Rigenera[®] System in the Treatment of Androgenetic Alopecia

Subject Area: 🕸 Dermatology

Colombina Vincenzi 🖽; Norma Cameli; Valeria Pessei; Antonella Tosti

Autologous Cellular Micrografts

- N=140 (113 females, 27 males)
- ACM monotherapy x1 session

AGA

• Improvement across all scalp regions w.r.t. hair density, shaft thickness, etc.)

 Table I Pre- and Post-Intervention Trichometry Findings by Scalp Region (Intrasubject Analysis)

Parameter (Unit)	Scalp Region	Base	line	Outcome		R	Mean Absolute Change ^a	p-value		
		Mean	SD	Mean	SD]				
Positive parameters										
Hair density (N/cm ²)	Frontal	176.87	42.86	182.36	42.49	0.807	5.49	0.015*		
	Temporal	134.01	30.48	138.51	29.29	0.752	4.50	0.013*		
	Occipital	175.50	38.11	182.62	39.33	0.694	7.12	0.006*		
Average hair shaft thickness (µm)	Frontal	48.49	8.14	50.12	9.19	0.740	I.6 4	0.003*		
	Temporal	52.86	9.08	54.74	9.28	0.753	1.88	0.001*		
	Occipital	55.58	9.08	56.54	8.93	0.703	0.96	0.102		
% thick hair	Frontal	45.71	16.02	48.11	16.98	0.754	2.40	0.016*		
	Temporal	54.31	16.18	57.57	15.91	0.715	3.26	0.002*		
	Occipital	59.11	16.31	60.85	15.75	0.734	I.7 4	0.081		
Cumulative hair thickness	Frontal	8.50	2.21	9.06	2.63	0.784	0.56	<0.001*		
	Temporal	7.05	1.87	7.52	1.76	0.799	0.48	<0.001*		
	Occipital	9.65	2.07	10.16	2.12	0.717	0.51	<0.001*		
No. follicular unit (%)	Frontal	82.67	12.08	84.31	11.48	0.658	1.64	0.048*		
	Temporal	65.17	11.47	66.47	10.98	0.660	1.30	0.099		
	Occipital	72.29	12.65	75.06	12.35	0.386	2.77	0.019*		

8 Open Access Full Text Artic

Clinical, Cosmetic and Investigational Dermatology

Dovepress

ORIGINAL RESEARCH

Short-Term Efficacy of Autologous Cellular Micrografts in Male and Female Androgenetic Alopecia: A Retrospective Cohort Study

Emerging Procedural Therapies

Hyperoxygenation Therapy

Hyperoxygenation Therapy

- Hypothesized MOA
 - Microvascular insufficiency to regions of the scalp that lose hair in male pattern baldness → less transcutaneous Po2
 - Example in facelift surgery w/ hair loss due to transient ischemia
 - Normobaric oxygenation (NBO) or hyperbaric oxygenation may help reverse ischemic damage
 - Hyperbaric (increased pressure) to compact size of O2 gas molecules for more efficient diffusion to target tissue
 - Increase hair fiber growth in anagen
 - Shown to delay anagen → catagen transition in C57BL/6JJcl mouse model
- Adverse Events
 - Hyperbaric oxygenation may lead to oxygen toxicity if >2 hrs

Ki67/Hoechst

Research Pape

TranscutaneousP₀₂of the Scalp in Male Pattern Baldness: A New Piece to the Puzzle

Goldman, Boris E. M.D.; Fisher, David M. M.D.; Ringler, Steven L. M.D.

Author Information⊗

Plastic and Reconstructive Surgery 97(6):p 1109-1116, May 1996.

The Effects of Ischemia and Hyperoxygenation on Hair Growth and Cycle

Harunosuke Kato, Kahori Kinoshita, Natsumi Saito, Koji Kanayama, Masanori Mori, Natsumi Asahi,showali Pages 83-94 | Received 22 Sep 2018, Accepted 22 Jun 2020, Published online: 30 Jul 2020

Hyperoxygenation Therapy

- Randomized trial of HBOT + FUE vs FUE transplantation monotherapy
- Lower post-op shedding, folliculitis and itching in HBOT group
- HBOT as possible adjuvant for transplant

conrol group

HBOT group

ORIGINAL CONTRIBUTION

The effect of hyperbaric oxygen therapy combined with hair transplantation surgery for the treatment of alopecia

Zhe-Xiang Fan MD, PHD, Yuyang Gan MD, Qian Qu MD, PHD, Jin Wang MD, PHD, Yang Lunan MD, PHD, Bingcheng Liu MD, PHD, Ruosi Chen MD, PHD, Zhi-Qi Hu MD, PhD 🔯 Yong Miao MD, PhD 🔯

First published: 08 August 2020 | https://doi.org/10.1111/jocd.13665 | Citations: 9

Hydradermabrasion

• Hypothesized MOA

- Increased vascular microcirculation
- Reduce inflammation (i.e. seborrhea)
- Clinical trials currently underway

Hydraderm for Androgenic Alopecia ClinicalTrials.gov ID (1) NCT05426629 Sponsor (1) University of Minnesota Information provided by (1) University of Minnesota (Responsible Party) Last Update Posted (1) 2024-04-16 Completed 0

Keravive by Hydrafacial for Scalp Health and Enhanced Hair Quality

ClinicalTrials.gov ID
NCT06112782
Sponsor
Beauty Health
Information provided by
Beauty Health (Responsible Party)
Last Update Posted
2023-11-01

Hydradermabrasion

Bioprinting

- Large-scale printing of epithelial and mesenchymal cells appropriately oriented with a guide in microgel that can be transplanted
- Bioengineered HFGs are potential tissue grafts for hair regenerative medicine because they can replicate interactions and hair follicle morphogenesis after transplantation.

Citata 1 for

Bioprinting of hair follicle germs for hair regenerative medicine⁴ Ayaka Nanmo⁴, Lei Yan^a, Tomoki Asaba⁴, Licheng Wan⁴, Tatsuto Kageyama^{4,b,c}, Junii Pukuda^{4,b,e}

Full length article

Extracorporeal Shock Wave Therapy

Extracorporeal Shock Wave Therapy

ST RZ MEDICAL

- **Study Design:** Prospective, noncontrolled (20 women, 8 sessions over 4 weeks)
- Key Results:

<u>Total Hair Count:</u> 8.9% increase (p < 0.00001) <u>Cumulative Hair Thickness:</u> 8.0% increase <u>Patient Feedback:</u> 85% reported improved hair volume

Mechanism

Mechanotransduction of acoustic waves stimulates neoangiogenesis and growth factor release (e.g., VEGF)

• Limitations

Nonrandomized, no true control group

Conclusion

ESWT shows **significant improvements** in hair density and quality for FPHL.

ORIGINAL ARTICLE 🕆 Open Access

Shock Waves for Hair Growth and Regeneration in Patients With Female Pattern Hair Loss

Pablo Naranjo García 💌 Rodolfo López Andrino

First published: 03 October 2024 | https://doi.org/10.1111/srt.70064

Extracorporeal Shock Wave Therapy

ESWT had precedence in dermatology for improving burn scar appearance/contractures and reducing pain

Extracorporeal Shock Wave Therapy

ESWT had precedence in dermatology for improving chronic non-healing wounds

Ultrasound in Med. & Biol., Vol. 34, No. 8, pp. 1261–1271, 2008 Copyright © 2008 World Federation for Ultrasound in Medicine & Biology Printed in the USA. All rights reserved 0301-5629/08/S-see front matter

doi:10.1016/j.ultrasmedbio.2008.01.010

Original Contribution

EXTRACORPOREAL SHOCK WAVE THERAPY FOR MANAGEMENT OF CHRONIC ULCERS IN THE LOWER EXTREMITIES

R. SAGGINI,* A. FIGUS,[†] A. TROCCOLA,[†] V. COCCO,* A. SAGGINI,* and N. SCUDERI[†]

Pulsed Electromagnetic Field (PEMF)

Pulsed Electromagnetic Field (PEMF)

- Electromagnetic field is non-toxic
- Enhances the activation and proliferation of dermal papilla cells in the human hair follicle
 - Upregulation of Wnt3a/beta-catenin signaling**
- During chemotherapy, patients exposed to electric stimulation manifest effective hair retention, and overcome chemotherapyinduced hair loss
- 50 Hz electromagnetic field leads to an increase in hair length in hair follicle cycling models

Upregulation of Wnt3 α / β -catenin pathway in human DPCs

EMFs induce HF growth in depilated C57BL/6 mice

🔒 Free access 🔰 Research article 👘 First published online March 1, 2019

Exposure to 50 Hz electromagnetic fields enhances hair follicle regrowth in C57BL/6 mice

Xinping Li ^(D), Xin Wang, t..., and <u>Mingsheng Zhang</u> (+2) <u>View all authors and affiliations</u>

Volume 244, Issue 5 | https://doi.org/10.1177/1535370219834639

pen Access Article

Extremely Low-Frequency Electromagnetic Fields Increase the Expression of Anagen-Related Molecules in Human Dermal Papilla Cells via GSK-3β/ERK/Akt Signaling Pathway

by Ga-Eun Ki $\buildrel S$, Yu-Mi Kim $\buildrel S$, Han-Moi Lim $\buildrel S$, Eun-Cheol Lee $\buildre S$, Yun-Kyong Choi $\buildre S$ and Young-Kwon Seo ' $\buildre G$

Department of Medical Biotechnology (BK21 Plus team), Dongguk University, Goyang-si 10326, Gyeonggi-do, Korea

* Author to whom correspondence should be addressed

Int. J. Mol. Sci. 2020, 21(3), 784; https://doi.org/10.3390/ijms21030784

PSYCHO-ONCOLOGY Psycho-Oncology 11: 244–248 (2002) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/pon.593

BRIEF REPORT

PULSED ELECTROSTATIC FIELDS (ETG) TO REDUCE HAIR LOSS IN WOMEN UNDERGOING CHEMOTHERAPY FOR BREAST CARCINOMA: A PILOT STUDY

BENJI BENJAMIN^a, DANUTE ZIGINSKAS^a, JOHN HARMAN^a and TIMOTHY MEAKIN^{b,*}

Pulsed Electromagnetic Field (PEMF)

- **Study Design:** Prospective, double-blind, placebocontrolled sham device (80 adults, 24 weeks)
- Treatment Group: PBMT + PEMF device (laser diodes emitting wavelengths of 660 nm (80 mW), 808 nm (50 mW) and PEMF at electromagnetic frequencies of 76.6 Hz and 60 Hz)
- Frequency: every week for the first 12 weeks, every other week for the next 8 weeks, and just one visit at 4 weeks after the last treatment

• Key Results:

<u>Hair Density:</u> significantly greater increase with treatment device vs sham device (p < 0.00001) <u>No Serious Adverse Reactions</u>

Limitations Not PEMF monotherapy (PBMT included)

TABLE 2. Change in hair density

Hair density Per cm ²	Treatment device (<i>n</i> = 35)	Sham device (<i>n</i> = 36)	95% two-sided CI	
	Mean (SD)	Mean (SD)		
Baseline	114.57 (28.75)	113.31 (30.07)		
At 23 weeks	139.37 (31.4)	119.78 (31.92)		
Percent increase(%)	23.93 (20.45)	6.15 (9.51)	(10.13, 25.43)*	

* *p*-value: 0.03325.

ORIGINAL ARTICLE 🚊 Open Access 🐵 🛈

The efficacy and safety of the combination of photobiomodulation therapy and pulsed electromagnetic field therapy on androgenetic alopecia

Mi Soo Choi MD, Byung Cheol Park MD, PhD 🕿

Conceptualizing Growing Hair

AGA/CIA

LPP/FFA/CCCA

Regeneration

- Minoxidil
- Growth Factors
- Stem Cells
- Oxygenation
- Vitamins*

Reduce DHT

AA

- 5-AR inhibitors
- Reduce microvascular insufficiency
 - Botulinum toxin (alleviate pressure from frontalis muscle)

Reduce Inflammation

- Anti-inflammatory medications (i.e. steroids, TCIs, JAK inhibitors, HCQ, PDE4i, MMF, etc.)
- Growth Factors
- Stem Cells
- Light/laser therapies

Target Scarring/ Collagen Remodeling

- Retinoids
- Growth Factors
- Stem Cells
- Light/laser therapies
- Botulinum toxin

THANK YOU!

drnaiemissa@gmail.com